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NORMAL MODE VIBRATIONS OF SYSTEMS OF
ELASTICALLY CONNECTED PARALLEL BEAMS

by

J. M. Seelig and W. H. Hoppmann II
Rensselaer Polytechnic Institute
Troy, New York

ABSTRACT
The report presents the development and solution of the
differentlal equations of motion of a system of n-elastically
comnected parallel beams. Using the results developed for the
general n-beam system, the particular case of a two beam system
was analyzed in detail. The frequencles and assoclated mode

shapes for various support condltions are presented explicitly.

Vibration experiments were performed in order to ascer-
tain the degree of applicability of the theory. It was found

that at least up to the eighth mode, reasonably good agreement
obtains.

INTRODUCTION

Flexural vibration of the single bar or beam has been ex-
tensively studied by many investigators. The validity of the
Bernoulli-Euler theory has been studled and interesting gener-
alizations of that useful theory have been developed. Little
work has been done on structures bullt up from beams. A par-
ticular case of interest consists of a parallel system of thin
beams elastically connected. The dynamics of such structural
units is of interest particularly because of their possible use
in various areas of technology, including that concerned with

space platforms for use in orbital problems.



Preliminary to studles of dynamical response of such
systems 1t is necessary to determine the normal mode shapes
and their assoclated frequencies. It i1s the purpose of this
report to provide explicitly these data and the experimentally
determined basis for their validity.

SYSTEM OF DIFFERENTIAL EQUATIONS OF VIBRATION OF n-BEAMS
Using Bernoulli-Euler beam theory, the system of differ-
ential equations for n-elastically connected beams shown in

Figure 1 can be written:

g, 2¥1, 2y K. ( ) (1)
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According to the general theory of elasticity, the free
vibrations of such a system are harmonic, so we may write for

each LA

w, = xn(x)eia“t (%)

where ® 1s the natural frequency and xn(x) is a function

of the space variable x only.

Using Eq. (4) the system of partial differential equa-
tions (1)-(3) reduce to the following system of ordinary
differential equations

2.
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Figure 1.. System of n-Elastically

Connected Slender Beams
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ELy — = oy Xy = = Ky (X = Xy 3)- Ky (X - Xy0,)  (6)

2

EIn -d—x-lrn - Py xn = JSI—].) (7)

A
5

Solving these equations simultaneously, we obtain a single

hnth order ordinary differential equation on say xl

dunxl
Z"’n_—rn *ougXy = O (8)
n=l dx

where the w, are in general simple functions of the physical
parameters of the problem and the frequency . Eq. (8) is
obviously an ordinary differential with constant coefficients

whose solution may be written as usual

X, = ce™ (9)

Substituting Eq. (9) into Eq. (8) gives the character-
1stic equation

n
Z n .o, . (10)
=0 ’

N
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If we let

B = (11)

Eq. (10) becomes

n
Z“n g = 0o (12)
n=0

Solving Eq. (12) for the f's and using Eq. (11), all
the A\'s are determined. The solution xl may now be written

In
kmx
X, = Z cpe . (13)
M)

In the solution of Eq. (12), if any of the B,'s are
zero or are repeated, the solution (13) to the differential
equation will be modified according to the well known methods
for ordinary differential equations with constant coefficients

for those particular values of Bn .

If solution (13) i1s then substituted into the system of
ordinary differential equations, we can get x2 poeey xn as

follows

A X
- i J=1,2,...pn
Xy = cy4e 1=1,2,...,0n (14)
The summation convention is used for the repeated index where
the °1J are linear functions of A's, w's and physical

constants,



Any elastic rotational or elastic support boundary condi-
tions may be investigated. For each of the beams in the n-

beam system, there will be four asscciated boundary conditions.

Applying the 4n homogeneous boundary conditions we get
a system of 4n homogeneous simultaneous equations in the

constants ¢y

1=1,.,.,4n
84g¢ = O 8= 1,....4n (15)
where the a,, are linear functions of A's, w's and physi-

cal constants.

In order to have non-trivial solutions, the determinant

of the coefficients of the ¢, must vanish.

laggl = 0o . (16)

The expansion of determinant (16) gives the frequency
equation. For each natural frequency the cy; can be deter-
mined in terms of one of the other cy from Eq. (15). The

complete solution is therefore

ME gut 1= 1,..,,4

Wy, = cye e . = 10u.iin (a7)

-6-



FREE VIBRATIONS OF ELASTICALLY
CONNECTED DOUBLE BEAM SYSTEMS

As a preliminary to an experimental verification of the
theory and to illustrate the general theory of n-beams, the

case of a double beam syastem consisting of two 1ldentical beams

elastically connected will be studied in detall, The equations

of motion then are:

a i, P K( ) (18)
+ = - Wa = W
EYLIML - 1T
4 2
3w, 37,
El —p + p = = = k(w, - ;) (19)
ax " C

The solutions may be taken in the following form:
w, = xl(x)eiwt (20)
Wy = Xy(x)e?t (21)

Substituting Eqs. (20) and (21) into Eqs. (18) and (19) give

N

gr 22 2x k(X (22)
TR s - kX - %)
4
d

u-&x—%-pmexz - - k(X - X;) (23)

Solving Eq. (22) for X, we get

-T-
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and now substituting X, into Eq. (23) we get

‘ 4
2 ax 4 2 2
1 2E1 2EI w™p 1 o 20
+ - ) + (—-5—-- L Lyx. = 0 (25)
ax% k kK k  dx' K k L

2
Letting El . 2 and QEE = b , Eq. (25) becomes

k
8 4
Xy 28 - 28y, 9X1 . 2 . 2
g+ ( w=22) ——p ¥ - 0 . (26)
dx a dx a

All Ends Simply Supported
Using the procedure outlined for the n-beam case, we will

now treat the case of two beams being simply supported. The

boundary conditions for this case are

X,(0) = o X,(8) = o0,
X}(0) = o XJ(8) = 0
| (27)
X,(0) = o0 X,(4) = 0
X3(0) = o X3(8) = o

From the boundary conditions (27) and using expression (24)
we finally get the determinantal equation

-8-
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Solving the determinantal equation (28) the frequencies

and assoclated mode shapes are shown to Se:

(2)

4
-2

o = r (29)
P
xl = A'sinﬂ
)
30)
)(2 = A'sin JXX (
(v)
n
o - E &) 4 2k (31)
: p 4 P
X, = A'sin EZZX
(32)

Following a procedure exactly arialogous to the one out-
lined, the mode shapes and their associated frequencies for

the following qasés have been determined.

All Ends Pree

a)2 = )&‘45.1.
P

=10~



where

cos knl cosh knl -]

- Icosh knx + cos knx sinh knx + sip knx}
! \cosh k 4 - cos ks ,s_inn k4 - sin K 8

x2 = xl .

(v)

manknuF—I--i-?-lE
P

where

cos knz cosh knl = 1

X, = A’

jcosh knx + cos knx sinh k x + sin knx}
lcosh knl - cos knl sinh knz - 8in knl

'12- ) xl,.

As another possible solution each bar of the system may

vibrate as a rigid body both angularly and transversely with

frequency
w2 ~ 2K
P

There also exists the trivial solution where the system

translates and rotates as a rigid body without vibration,

-1ll.



(a)
P
where

cos knz cosh knl =]

_ 2
X, = A {sinh kn(x -2-)

sin kn(x - %)}

sinh Eéi sin ng

L=X
(b)
2: 4E_I+_2_l_c_
° “n P P
where
cos knl cosh knz = 1

sinh k (x - )  sin k(x - §)
xl'A'{ ﬂ(“[ - knl }

sinh =

Xp= - X

sin e

. =12



e ers =

Double Cantilever, Both Beams Fixed at O

where

cos knz cosh knt = -1

x1 - Al {:osh knx ~ cos KX ) sinh knx - 8in knx}

osh knz + cos knz sinh knl + 8in knt

(v)
w? 4 EI + 2k
-kn —
P
where

cos knl cosh knz = - 1]

X = At jcosh knx - cOoB8 knx ) sinh knx - 8in knx}
1 lcosh k ¢ + cos k. £ sinh k¢ + sin k8

N=-% .

-13-




Double Propped Cantilever, Both Beams Fixed at End £

where
tanh knz = tan knz

xl - A {:inh knx ) Piq knx}

inh knl sin knl
x2 = xl *
(b)
0)2 - knu —E-I— 4 -2-12
P P
where

tanh k. ¢ = tan 1911

. fsinh k,x ) sin k Xy
i B vy k4 sin "n‘}

xa - - X

All of these results are shown in tabular form in Figure 2.

One Bar Simply Supported, Other Bar Free
In all of the previously determined cases, there exists

a symmetry between the boundary conditions for the two beams.

«ll-
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Due to this, the 8 x 8 determinant was reduced to the evalua-
tion of two 4 x 4 determinants. If.howiver, this symmetry 1is
hot present, the zeros of the 8 x 8 determinant must be found.

As an example the following case is shown.

The boundary conditions for one bar simply supported,

the other free, are

x,(0) = 0 X,(8) = 0
X{0) = o Xi(s) = 0.
(33)
X30) = o X3(8) = o
xg'0) = o Xy(s) = o

Using relationship (24) and the boundary conditions the
following determinantal equation is obtained.

-16-
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The zeros of determinant (34) are now found giving the
natural frequencies. From these terms the mode shape asso-
ciated with each natural frequency can be determined. For a

specific case they are shown in Figure 3,

VIBRATION EXPERIMENTS WITH DOUBLE BEAM SYSTEM

The experimental model used (See Figure 4) in the normal
mode vibration experiments was supported on a massive rein-
forced concrete base 3' x 3' x 10'. The beam supports were
made of 3/4" steel plates, in which provision was made for
the placement of pin and roller supports. The pin support
consisted of an actual pin placed through the bar at its mid
height, while a roller support was provided by use of four
roller bearings placed on the lateral boundaries of the bar,
so as to provide a momentless end condition which woulﬁ, how-
ever, allow axlial motion of tpe bar. Tracks were placed above
and below the model and were flrmly attached to the steel
support plates giving added rigidity to the supporting

structure.

The model tested consisted of two 1/2" x 1/2" x 39.9"
parallel bars, elastically connected with 20 coll springs
placed on 2 inch centers. The bars were cut from standard
cold rolled sections and had a Young's modulus close to 29 x
lO6 psl as determined by test. The springs were 2.0" in
length and had a spring constant of 40 pounds per inch. They

were affixed to the bars using Duco cement.

-18- .
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The system was driven by an electromagnet supplied
an oscillator. The output of the osc¢illator was displayed on
the upper beam of a Type 502 Tektronix Dual Beam Qscilloscope.
The response of thé model was obtained using capacitive type
pickups2 placed on the aforementioned tracks. This signal
was displayed on the lower beam of the oscilloscope. Resonant
frequencies were determined by examination of the capacitive
pickup response as the frequency spectrum was traversed. A
marked increase in response lndicated a resonant frequency.
Due to the pull-pull characteristic of the electromagnet, the
frequency response of the beam system was twice the frequency

set on the bscillator.

The upper beam vertical amplifier'was.then switched to
the horizontal deflection plates and a figure 8 Lissajous
figure resulted due to the 2:1 frequency ratlios. The capaci-
tive pickup was then moved on “he track until the figure 8
horseshoe degenerated to a s..aight line. Continued movement
of pickup inverted the figure 8 horseshoe. The nodal point
was located when the straight line configuratlion was observed.

Both bars were checked at the various resonant frequencies

1w. H. Hoppmann IX, N. J. Huffington, Jr., and L. S. Magness,
"A Study of 0rtho§onally Stiffened Plates", J. Appl. Mech.,
23, p. 343, (1956). '

23, N. Shafer and R. Plunkett, "A Miniature Oscilloscope and

Vibration Pickup for Nodal Pattern Tracing", Proc. Soc. Exp.
Stress Analysis, 13, No. 1, p. 123, (1955).

-2l-



and all nodal points were recorded. In order to determine
the phasing of the vibrating bars, the responses of two ca-
pacitive plickups, placed at corresponding locations of the
bars, were displayed on the upper and lower oscilloscope
beams, A difference swlitch on the Type 502 algebraically
subtracted the lower beam input from the upper beam input.

As one pickup was above the heam system and the other below
it, the response when two points of the system were in phase
resulted in a zero amplitude (strailght line) sine wave, while
when they were out of phase, é sine wave whose amplitude was
the sum of the amplitudes of the original sine wave responses

was observed,

The relative amplitudes of displacement were determined
using micrometer barrels fitted with conical caps. The mi-
crometers were electrically connected to a un1t3 which, when
contact was made by a micrometer with a bar, a clicking
switch as well as a neon light would be activated, Initial
readings on the micrometers which were set at various loca-
tions on the bars were made with the system at rest., The
system was then driven at a resonant frequency. The microme-
ter heads were then made to just contact the vibrating bars

and additional readings were made, By differencing these

3. H. Hoppmann II, "Impulsive Loads on Beams", Proc. Soc.
Exp. Stress Analysis, 10, No, 1, p. 157, (1952).

-22-




readings, the relative amplitudes of displacement were deter-
mined.

The mode shapes were drawn using the results of the nodal

point, phasing, and relative amplitude measurements.

Three cases, each with different end supports, were
tested. These were: Case I - all four boundaries simply
supported; Case II - all boundaries free; Case IiI - upper
beam sihply supported, lower beam free, For Case II, light
string was suspended from the upper track and was looped on
the upper beam, at locations corresponding to the locations
of nodal points for the particular resonant frequency being
investigated, as support for the system. The location of the
string supports'at the nodal points did not change the free-
free boundary conditions and, therefore, did not introduce

any error.

As a check on the pin and roller supports, a single beam,
simply sqpported, was driven and its resonant frequencies
were determined. These values were checked against calculated
theoretical values. The values were within a few percent of
one another, 1nd1§at1ng a reasonable approximation to simple

support conditions.

NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS
In order to provide a basis for comparison between calcu-

lated results and experimental results. the double beam system

-23-



chosen corresponded to those used as models in the experimental

work.

For purposes of i1llustration, three cases were investi-
gated. These were: Case I - all four boundaries simply sup-
ported; Case I.. - all boundaries free; Case III - upper bean

simply supported, lower beam free,

Using the formulae shown in Figure 2 and Figure 3, the
frequencies in Tables 1, 2, and 3 were computed. The experi-
mental frequencies shown in Tables 1, 2, and 3 were determined

by the procedure outlined in previous section.

Case I - All Four Boundaries
Simply Supported

Calec Exp
" VeDe 8,y
28 29
79 79

113 112
135 137
253 244
264 261
451 456
460 490
Table 1

24
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Case II - All Boundaries Free

Cale Exp
VeD.8,
65 64
98 97
178 173
192 191
350 334
358 354
578 574
583 590
Table 2

Case III . Upper Beam Simply
Supported, Lower Beam Free

Cale Exp
VeR,y8B,
23 23
49 48
72 70
84 84
128 126
205 182
Table 3 -

For Case III, if Figure 3 is used for combinations of §,
EI and k, the same values of ¢ will be found as for the
particular case investigited,

The location of nodil points for all cases investigated
checked to within 2% of their calculated values.

-25-
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CONCLUSIONS AND DISCUSSION

Theory has been developed for the free vibrations of
n-elastically connected parallel beams. As a consequence
the normal mode shapes gnd assoclated natural frequencies can
be calculated for any combination of homogeneous boundary con-
ditions. For a very small number of beams the calculations
can be conducted with simple computational devices. Howéver,
for a larger number of beams it is clear that high speed come-

puters will be required.

For the double beam system the frequencies and normal
mode shapes have been determined for several interesting
boundary conditions. Results have been tabulated and compared
wlth those obtained from experiments oh steel beams coupled

wlth steel springs.

It 1s concluded that for the lower modes, at least up to
the eighth, the agreement between theory and experiment 1is

very good,

26



